
Security Assessment

Faraland
May 23rd, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
ECK-01 : Incorrect Fee

ECK-02 : Potential Over Mint

ECK-03 : Corner Case for Non-Contract Caller Check

ECK-04 : Centralization Risk

ECK-05 : Lack of Upper Bound Check for Input Variable

MKC-01 : Redundant Comparison to Boolean Constant

MKC-02 : Lack of Reentrancy Check

MKC-03 : Lack of Upper Bound Check for Input Variable

Formal Verification Requests

Appendix

Disclaimer

About

Faraland Security Assessment

Summary
This report has been prepared for Faraland smart contracts, to discover issues and vulnerabilities in the

source code of their Smart Contract as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Static Analysis and Manual

Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in public;

Provide more transparency on privileged activities once the protocol is live.

Faraland Security Assessment

Overview

Project Summary

Project Name Faraland

Platform BSC

Language Solidity

Codebase https://github.com/ensete/moonknights-sc

Commits
1. d4f0e82b0dac3e32d26d05c124c5f772647bb321
2. f0e0531b1989d1e20df7526ac824931b23215dd5

Audit Summary

Delivery Date May 23, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Total Issues 8

Critical 0

Major 1

Medium 3

Minor 2

Informational 2

Discussion 0

Faraland Security Assessment

https://github.com/ensete/moonknights-sc

Audit Scope

ID file SHA256 Checksum

ECK equipment/Equipment.sol 1f177043682bd4e6eec0aad75134486c23b2942f83f4e8c1124d686043c22900

ERC equipment/libs/ERC1155.sol e6856fd10e60796174091a447998c822e996bd23dcd9e7e0997be1d832fbd234

IEC interfaces/IEquipment.sol 3a133857aeda8326f758da8838355a8009847a4f56a509485f4ccf4013d90874

IMK interfaces/IMoonKnight.sol 2a7dfa5e5a9312d8f624088b2b96318d52037ad84da75169b589d2f444e584c0

IPC interfaces/IPet.sol a393e0250039d4b11c21b9237ec8a99abde4be4bbf9b4c2df8bccf919e573881

ISE interfaces/IStakingExpPool.sol 6946f59a5a48fa82fc2cec083a91e9d94894412fdcf2d0c6a9b8a158fe92679e

MKC knight/MoonKnight.sol fc12f0dddeec2f7c769522c999594e13731d4ab5dfd271703f5522ca10e96706

SEP staking/StakingExpPool.sol fe9251130eeb624a7889b87ed3bd309302ec6001b6bf8c1dbae12c394498ebcf

FCC token/FaraCrystal.sol 964f12fce860c551eca1c5e0641222bb79ec36fb667e75da0a77cad50babb77f

ATC utils/AcceptedToken.sol b7d3c2591193424c20e9504a73aa93fdfa934919b69b02c75b815cf8b3c91aa9

PGC utils/PermissionGroup.sol 09eb3d5ff25cfeea336541cdc93c3142c6fedbf89f8cb8bddb61287e7b9edcb5

TWC utils/TokenWithdrawable.sol 6213143a6ec830cd18f8b9517412d1bcf467d0a58d57408e6f654dcf64a4e2c1

Faraland Security Assessment

To set up the project correctly, improve overall project quality and preserve upgradability, the following

roles, are adopted in the codebase:

operator , is adopted to mint, return, and equip equipment in Equipment .

operator , is adopted to generate and level up knights in MoonKnight .

owner , is adopted to update configurations, fees and create items in Equipment .

owner , is adopted to set up and manage the vendor in EquipmentVendor .

owner , is adopted to update configurations and fees in MoonKnight .

owner , is adopted to set MoonKnight contract in StakingExpPool .

owner , is adopted to set the accepted token in AcceptedToken .

owner , is adopted to manage operators in PermissionGroup .

owner , is adopted to manage the blacklist in TokenWithdrawable .

knightOwner , is adopted to manage users' own knights in MoonKnight .

To improve the trustworthiness of the project, any dynamic runtime updates in the project should be

notified to the community. Any plan to invoke the aforementioned functions should be also considered to

move to the execution queue of Timelock contract.

Faraland Security Assessment

Findings

ID Title Category Severity Status

ECK-01 Incorrect Fee Logical Issue Medium Resolved

ECK-02 Potential Over Mint Logical Issue Medium Resolved

ECK-03
Corner Case for Non-Contract Caller
Check

Volatile Code Informational Acknowledged

ECK-04 Centralization Risk
Centralization /
Privilege

Medium Acknowledged

ECK-05
Lack of Upper Bound Check for Input
Variable

Logical Issue Minor Acknowledged

MKC-01
Redundant Comparison to Boolean
Constant

Coding Style Informational Resolved

MKC-02 Lack of Reentrancy Check Logical Issue Major Resolved

MKC-03
Lack of Upper Bound Check for Input
Variable

Logical Issue Minor Acknowledged

Faraland Security Assessment

8
Total Issues

Critical 0 (0.00%)

Major 1 (12.50%)

Medium 3 (37.50%)

Minor 2 (25.00%)

Informational 2 (25.00%)

Discussion 0 (0.00%)

ECK-01 | Incorrect Fee

Category Severity Location Status

Logical Issue Medium equipment/Equipment.sol: 122 Resolved

Description

rollEquipmentGacha() will mint random equipment. However it charges upgradeFeeInToken , rather than

mintFeeInToken .

Recommendation

We advise the client to double check the fee mechanism to make sure the fee charging is reasonable.

Alleviation

The client heeded the advice and resolved this issue in commit

f0e0531b1989d1e20df7526ac824931b23215dd5 .

Faraland Security Assessment

ECK-02 | Potential Over Mint

Category Severity Location Status

Logical Issue Medium equipment/Equipment.sol: 109~110 Resolved

Description

It is dangerous to change balances without checking item.maxSupply and item.minted . Suppose an

item has the property maxSupply=10 and minted=9 . The operator then call mint(account, id, 1) . This

will update item.minted=10 . Users can still call upgradeItem() to burn the last tier of this item to mint this

item. This will cause minted > maxSupply .

Recommendation

We advise the client to check item.maxSupply and item.minted before updating balances and

_items.minted .

Alleviation

The client heeded the advice and resolved this issue in commit

f0e0531b1989d1e20df7526ac824931b23215dd5 .

Faraland Security Assessment

ECK-03 | Corner Case for Non-Contract Caller Check

Category Severity Location Status

Volatile Code Informational equipment/Equipment.sol: 117 Acknowledged

Description

isContract() cannot 100% guarantee the caller is a non-contract user, since EXTCODESIZE returns 0 if it

is called from the constructor of another contract. Please consider if this is a problem for the project.

Recommendation

We advise the client to be skeptical about the return value of isContract() .

Alleviation

N/A

Faraland Security Assessment

ECK-04 | Centralization Risk

Category Severity Location Status

Centralization / Privilege Medium equipment/Equipment.sol: 125, 145, 138 Acknowledged

Description

The role operator has the authority to mint and burn arbitrary equipment. In returnItems() , the operator

can even mint equipment without the limitation of item.maxSupply .

Recommendation

We advise the client to handle the governance account carefully to avoid any potential hack. We also

advise the client to consider the following solutions:

1. Timelock with reasonable latency for community awareness on privileged operations;

2. Multisig with community-voted 3rd-party independent co-signers;

3. DAO or Governance module increasing transparency and community involvement;

Alleviation

[Faraland Team]: After the system is running smoothly, we will consider to pass the owner key to our

community through a DAO contract, that can adjust all the parameters in the SC. Operators are trusted to

operate for the best interest of the whole platform.

Faraland Security Assessment

ECK-05 | Lack of Upper Bound Check for Input Variable

Category Severity Location Status

Logical Issue Minor equipment/Equipment.sol: 48, 53 Acknowledged

Description

The role owner can set the following state variables arbitrary large causing potential risks in fees :

upgradeFeeInToken

mintFeeInToken

Recommendation

We recommend setting upper bound and check the input variable fee .

Alleviation

[Faraland Team]: We want these parameters to be flexible based on the price of our token.

Faraland Security Assessment

MKC-01 | Redundant Comparison to Boolean Constant

Category Severity Location Status

Coding Style Informational knight/MoonKnight.sol: 145~146, 165 Resolved

Description

_validateStr() returns a Boolean value. Boolean value can be used directly and do not need to be

compare to true or false. For example, require(_validateStr("certik",false)) is valid.

Recommendation

We recommend removing the equality to the Boolean constant.

Alleviation

The client heeded the advice and resolved this issue in commit

f0e0531b1989d1e20df7526ac824931b23215dd5 .

Faraland Security Assessment

MKC-02 | Lack of Reentrancy Check

Category Severity Location Status

Logical Issue Major knight/MoonKnight.sol: 212, 280, 239, 265 Resolved

Description

Calling MoonKnight.buy() , MoonKnight.sacrificeKnight() , MoonKnight.cancelOffer() and

MoonKnight.takeOffer() might trigger function address.call{}() , which is implemented by the third

party. If there are vulnerable external calls in the third party, reentrancy attacks could be conducted

because these four functions have state updates and event emits after external calls.

The scope of the audit would treat the third-party implementation as a black box and assume its functional

correctness. However, third parties may be compromised in the real world that leads to assets lost or

stolen.

Recommendation

We recommend applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned functions to prevent reentrancy attack.

Alleviation

The client heeded the advice and resolved this issue in commit

f0e0531b1989d1e20df7526ac824931b23215dd5 .

Faraland Security Assessment

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

MKC-03 | Lack of Upper Bound Check for Input Variable

Category Severity Location Status

Logical Issue Minor knight/MoonKnight.sol: 106, 110 Acknowledged

Description

The role owner can set the following state variables arbitrary large or small causing potential risks:

setFloorPriceCap

setServiceFee

Recommendation

We recommend setting proper ranges and check the input variable value .

Alleviation

[Faraland Team]: We want these parameters to be flexible based on the price of our token.

Faraland Security Assessment

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Faraland Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Faraland Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Faraland Security Assessment

